MINSU(移动库存和扫描单元)算法使用计算视觉分析方法记录机柜的剩余数量/填充度。为此,它通过了五步方法:对象检测,前景减法,K-均值聚类,百分比估计和计数。输入图像通过对象检测方法,以分析机柜在坐标方面的特定位置。这样做之后,它会通过前景减法方法来使图像通过删除背景更加焦点到机柜本身(某些手动工作可能必须完成,例如选择不被算法切割的零件) 。在K-均值聚类方法中,多色图像变成了3彩色单调图像,以更快,更准确的分析。最后,图像经过百分比估计和计数。在这两种方法中,发现机柜内部的材料的比例以百分比为百分比,然后用来近似内部的材料数量。如果该项目成功,剩余数量管理可以解决简介早期解决的问题。
translated by 谷歌翻译
图像缝线旨在缝合从不同的观点拍摄的图像到与更广泛的视野的图象。现有方法使用估计的扭曲函数将目标图像翘曲到参考图像,并且同情是最常用的翘曲功能之一。然而,当由于相机的非平面场景和平移运动导致图像具有大的视差时,同性特性不能完全描述两个图像之间的映射。基于全局或​​本地同类估计的现有方法不存在来自此问题的不含问题,并且由于视差而受到不期望的伪影。在本文中,而不是依赖于基于同位的扭曲,我们提出了一种新颖的深度图像拼接框架,利用像素 - 明智的横田来处理大视差问题。所提出的深度图像拼接框架由两个模块组成:像素 - 明智的翘曲模块(PWM)和缝合图像生成模块(SIGMO)。 PWM采用光学流量估计模型来获得整个图像的像素方面的翘曲,并通过所获得的跨场重新恢复目标图像的像素。 SIGMO将翘曲的目标图像和参考图像混合,同时消除了诸如损害缝合结果的合理性的未对准,接缝和孔的不需要的伪影。为了培训和评估所提出的框架,我们构建了一个大规模数据集,包括具有相应像素的图像对的图像对,该图像对进行映像对实际翘曲和样本缝合结果图像。我们表明,所提出的框架的结果与传统方法的结果优于常规方法,特别是当图像具有大视差时。代码和建议的数据集即将公开发布。
translated by 谷歌翻译
计算机愿景一直在蓬勃发展,因为AI开发正在增加推力。使用深度学习技术是计算机科学家认为解决方案的最受欢迎的方式。然而,深度学习技术倾向于显示出比手动处理的性能较低。使用深度学习并不总是与计算机视觉相关的问题的答案。
translated by 谷歌翻译
本文介绍了持续的Weisfeiler-Lehman随机步行方案(缩写为PWLR),用于图形表示,这是一个新型的数学框架,可生成具有离散和连续节点特征的图形的可解释的低维表示。提出的方案有效地结合了归一化的Weisfeiler-Lehman程序,在图形上随机行走以及持续的同源性。因此,我们整合了图形的三个不同属性,即局部拓扑特征,节点度和全局拓扑不变,同时保留图形扰动的稳定性。这概括了Weisfeiler-Lehman过程的许多变体,这些变体主要用于嵌入具有离散节点标签的图形。经验结果表明,可以有效地利用这些表示形式与最新的技术产生可比较的结果,以分类具有离散节点标签的图形,并在对具有连续节点特征的人分类中增强性能。
translated by 谷歌翻译
360 {\ Deg}成像最近遭受了很大的关注;然而,其角度分辨率比窄视野(FOV)透视图像相对较低,因为它通过使用具有相同传感器尺寸的鱼眼透镜而被捕获。因此,它有利于超声解析360 {\ DEG}图像。已经制造了一些尝试,但大多数是常规的投影(ERP),尽管尽管存在纬度依赖性失真,但仍然是360 {\ DEG}图像表示的方式之一。在这种情况下,随着输出高分辨率(HR)图像始终处于与低分辨率(LR)输入相同的ERP格式,当将HR图像转换为其他投影类型时可能发生另一信息丢失。在本文中,我们提出了从LR 360 {\ Deg}图像产生连续球面图像表示的新颖框架,旨在通过任意360 {\ deg}预测给定球形坐标处的RGB值。图像投影。具体地,我们首先提出了一种特征提取模块,该特征提取模块表示基于IcosaheDron的球面数据,并有效地提取球面上的特征。然后,我们提出了一种球形本地隐式图像功能(SLIIF)来预测球形坐标处的RGB值。这样,Spheresr在任意投影型下灵活地重建HR图像。各种基准数据集的实验表明,我们的方法显着超越了现有方法。
translated by 谷歌翻译
The 3D-aware image synthesis focuses on conserving spatial consistency besides generating high-resolution images with fine details. Recently, Neural Radiance Field (NeRF) has been introduced for synthesizing novel views with low computational cost and superior performance. While several works investigate a generative NeRF and show remarkable achievement, they cannot handle conditional and continuous feature manipulation in the generation procedure. In this work, we introduce a novel model, called Class-Continuous Conditional Generative NeRF ($\text{C}^{3}$G-NeRF), which can synthesize conditionally manipulated photorealistic 3D-consistent images by projecting conditional features to the generator and the discriminator. The proposed $\text{C}^{3}$G-NeRF is evaluated with three image datasets, AFHQ, CelebA, and Cars. As a result, our model shows strong 3D-consistency with fine details and smooth interpolation in conditional feature manipulation. For instance, $\text{C}^{3}$G-NeRF exhibits a Fr\'echet Inception Distance (FID) of 7.64 in 3D-aware face image synthesis with a $\text{128}^{2}$ resolution. Additionally, we provide FIDs of generated 3D-aware images of each class of the datasets as it is possible to synthesize class-conditional images with $\text{C}^{3}$G-NeRF.
translated by 谷歌翻译
In both terrestrial and marine ecology, physical tagging is a frequently used method to study population dynamics and behavior. However, such tagging techniques are increasingly being replaced by individual re-identification using image analysis. This paper introduces a contrastive learning-based model for identifying individuals. The model uses the first parts of the Inception v3 network, supported by a projection head, and we use contrastive learning to find similar or dissimilar image pairs from a collection of uniform photographs. We apply this technique for corkwing wrasse, Symphodus melops, an ecologically and commercially important fish species. Photos are taken during repeated catches of the same individuals from a wild population, where the intervals between individual sightings might range from a few days to several years. Our model achieves a one-shot accuracy of 0.35, a 5-shot accuracy of 0.56, and a 100-shot accuracy of 0.88, on our dataset.
translated by 谷歌翻译
Feature selection helps reduce data acquisition costs in ML, but the standard approach is to train models with static feature subsets. Here, we consider the dynamic feature selection (DFS) problem where a model sequentially queries features based on the presently available information. DFS is often addressed with reinforcement learning (RL), but we explore a simpler approach of greedily selecting features based on their conditional mutual information. This method is theoretically appealing but requires oracle access to the data distribution, so we develop a learning approach based on amortized optimization. The proposed method is shown to recover the greedy policy when trained to optimality and outperforms numerous existing feature selection methods in our experiments, thus validating it as a simple but powerful approach for this problem.
translated by 谷歌翻译
The purpose of this work was to tackle practical issues which arise when using a tendon-driven robotic manipulator with a long, passive, flexible proximal section in medical applications. A separable robot which overcomes difficulties in actuation and sterilization is introduced, in which the body containing the electronics is reusable and the remainder is disposable. A control input which resolves the redundancy in the kinematics and a physical interpretation of this redundancy are provided. The effect of a static change in the proximal section angle on bending angle error was explored under four testing conditions for a sinusoidal input. Bending angle error increased for increasing proximal section angle for all testing conditions with an average error reduction of 41.48% for retension, 4.28% for hysteresis, and 52.35% for re-tension + hysteresis compensation relative to the baseline case. Two major sources of error in tracking the bending angle were identified: time delay from hysteresis and DC offset from the proximal section angle. Examination of these error sources revealed that the simple hysteresis compensation was most effective for removing time delay and re-tension compensation for removing DC offset, which was the primary source of increasing error. The re-tension compensation was also tested for dynamic changes in the proximal section and reduced error in the final configuration of the tip by 89.14% relative to the baseline case.
translated by 谷歌翻译
According to the rapid development of drone technologies, drones are widely used in many applications including military domains. In this paper, a novel situation-aware DRL- based autonomous nonlinear drone mobility control algorithm in cyber-physical loitering munition applications. On the battlefield, the design of DRL-based autonomous control algorithm is not straightforward because real-world data gathering is generally not available. Therefore, the approach in this paper is that cyber-physical virtual environment is constructed with Unity environment. Based on the virtual cyber-physical battlefield scenarios, a DRL-based automated nonlinear drone mobility control algorithm can be designed, evaluated, and visualized. Moreover, many obstacles exist which is harmful for linear trajectory control in real-world battlefield scenarios. Thus, our proposed autonomous nonlinear drone mobility control algorithm utilizes situation-aware components those are implemented with a Raycast function in Unity virtual scenarios. Based on the gathered situation-aware information, the drone can autonomously and nonlinearly adjust its trajectory during flight. Therefore, this approach is obviously beneficial for avoiding obstacles in obstacle-deployed battlefields. Our visualization-based performance evaluation shows that the proposed algorithm is superior from the other linear mobility control algorithms.
translated by 谷歌翻译